

Atlante delle specie faunistiche indicatrici di qualità ambientale nel territorio della Provincia di Milano

A cura di:

Dott. Alberto Meriggi - Dipartimento di Biologia Animale – Università degli Studi di Pavia - Supervisione Scientifica

Dott. Enrico Bassi - Dipartimento di Biologia Animale – Università degli Studi di Pavia - Uccelli

Dott.ssa Anna Brangi - Dipartimento di Biologia Animale – Università di Pavia - Grado di naturalità del territorio e

trattamento statistico dei dati sugli uccelli

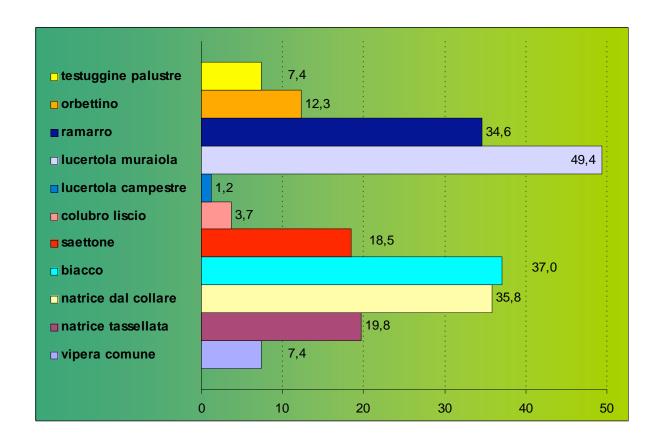
Dott. Oreste Sacchi - Studio Naturalistico Platypus S.r.l. Milano - Mammiferi Dott. Ugo Ziliani - Studio Naturalistico Platypus S.r.l. Milano - Anfibi e Rettili

RETTILI

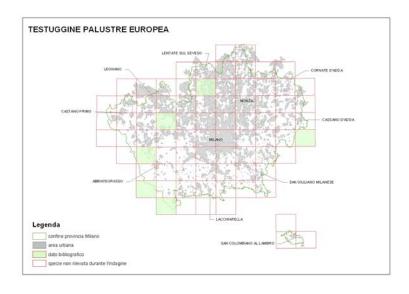
2.2.1 Analisi generale dei dati raccolti

Il popolamento dei rettili della provincia di Milano risulta composto da 12 specie, non sono state inserite le segnalazioni bibliografiche di specie alloctone quali i gechi (tab. 20).

Tabella 20 – Elenco tassonomico delle specie di rettili rilevate in provincia di Milano.

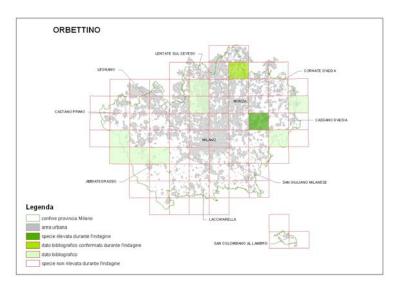

Ordine	Famiglia	Nome latino	Nome italiano
Cheloni	Emididi	Emys orbicularis (Linnaeus, 1758)	Testuggine palustre europea
		Trachemys scripta (Schoepff, 1792)	Testuggine palustre dalle orecchie rosse
Squamati	Anguidi	Anguis fragilis fragilis Linnaeus, 1758	Orbettino
	Lacertidi	Lacerta bilineata Daudin, 1802	Ramarro occidentale
		Podarcis muralis (Laurenti, 1768)	Lucertola muraiola
		Podarcis sicula (Rafinesque, 1810)	Lucertola campestre
	Colubridi	Coronella austriaca austriaca Laurenti, 1768	Colubro liscio
		Elaphe longissima (Laurenti, 1768)	Saettone comune
		Hierophis viridiflavus (Lacépède, 1789)	Biacco
		Natrix natrix helvetica (Lacépède, 1789)	Natrice dal collare
		Natrix tessellata (Lacépède, 1789)	Natrice tassellata
	Viperidi	Vipera aspis (Linnaeus, 1758)	Vipera comune

Da: Razzetti E. in Bernini et al. 2004

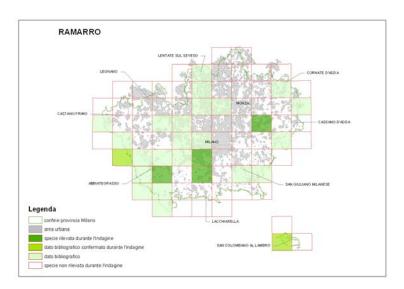

Il lavoro svolto ha permesso di raccogliere 243 segnalazioni bibliografiche non antecedenti al 1995 e 89 osservazioni dirette.

Nel grafico seguente è indicata la copertura percentuale per ogni specie dei quadranti della carta floristica della provincia di Milano (Fig. 7).

Figura 7 - Frequenza percentuale delle specie di Rettili nei quadranti della carta floristica

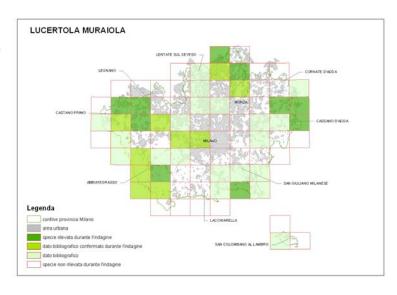


2.2.2 Distribuzione dei rettili nel territorio provinciale

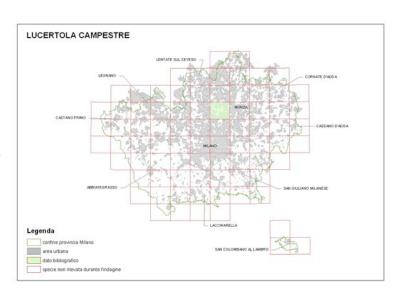


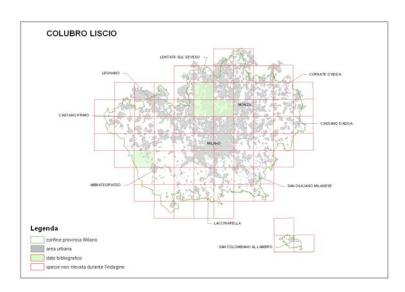
La testuggine palustre è distribuita in 6 quadranti, pari al 7,4% del territorio; le segnalazioni, bibliografiche, sono nel Parco della Valle del Ticino, nel Parco Adda Nord (Zanaboni com. pers.), nel Parco delle Groane (da reintroduzione, Biasioli et al. 2005) e Oasi di Vanzago. (da reintroduzione, Gariboldi et al. 2004). La specie è estremamente localizzata nelle aree protette.

L'orbettino risulta distribuito in 10 quadranti, pari al 12,3% del territorio; le segnalazioni complessive sono state 13 di cui 2 raccolte in questa indagine; in 9 quadranti risultano segnalazioni bibliografiche, di cui 1 riconfermata in questa indagine, e in 1 quadrante è stata rilevata una nuova segnalazione. Le segnalazioni raccolte sono scarse e la distribuzione è molto localizzata. La specie ha abitudini fossorie per cui si

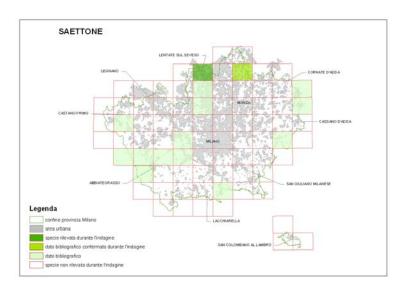

conosce poco sia della distribuzione sia delle sue esigenze. L'orbettino dovrebbe essere abbastanza comune sia negli ambienti agricoli sia in ambienti di transizione verso forme più naturali ma probabilmente ha risentito della sempre crescente pressione antropica che insiste sul territorio provinciale.

Il ramarro è distribuito in 28 quadranti, pari al 34,6% del territorio. Le segnalazioni complessive sono state 50 di cui 7 raccolte in questa indagine; in 21 quadranti risultano segnalazioni bibliografiche, di cui 2 riconfermate in questa indagine, e in 4 quadranti è stata rilevata una nuova segnalazione. La specie è diffusa in tutta la provincia, in maniera uniforme nei Parchi del Ticino e delle Groane, meno continua la

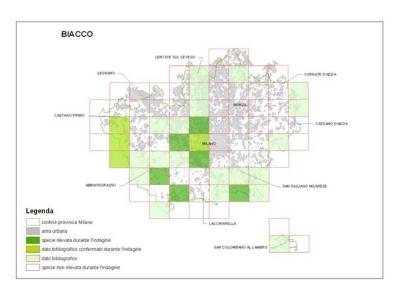

presenza nel Parco dell'Adda Nord. Lacune nella distribuzione sono state individuate nelle aree agricole, dove il ramarro viene osservato raramente. La specie è segnalata anche alle Sorgenti della Muzzetta (Gariboldi et al. 2004).

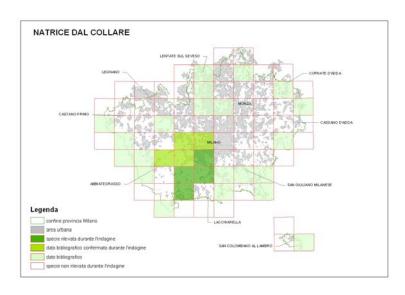

La lucertola muraiola è distribuita in 40 quadranti, pari al 49,4% del territorio. Le segnalazioni complessive sono state 91 di cui 38 raccolte in quest'indagine; in 30 quadranti risultano segnalazioni bibliografiche, di cui 10 riconfermate in questo studio, e in 10 quadranti è stata rilevata una nuova segnalazione. La specie è diffusa in tutta la provincia ed è comune e frequente. Ci sono delle lacune nelle aree agricole e a forte

pressione antropica, dove la specie è stata osservata raramente e in numeri ridotti.


La lucertola campestre è distribuita in 1 quadrante, pari al 27,2% del territorio. Le due segnalazioni bibliografiche riguardano il Parco di Grugnotorto (Gariboldi 2005) e le Cave di Paderno. Risulta presente (non in cartina) anche una segnalazione nel Parco del Ticino, (località Fagiana, Gentilli e Scali 2004). La specie è molto rara anche in tutta la regione (Bernini et al. 2002), in provincia praticamente non esistono ambienti elettivi per la specie.

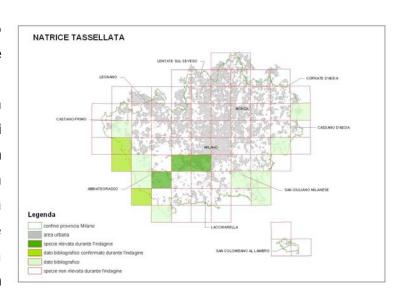
Il colubro liscio è distribuito in 4 quadranti, pari al 4,9% del territorio. Le 4 segnalazioni georeferenziate sono bibliografiche, localizzate nel Parco delle Groane. Altre segnalazioni sono presenti nel Parco del Ticino, sia nei Boschi della Fagiana sia nel Basso Corso (Gentilli e Scali 2004). In tutta la Pianura Padana lombarda la specie è molto rara e localizzata (Bernini et al. 2002); pur essendo una specie

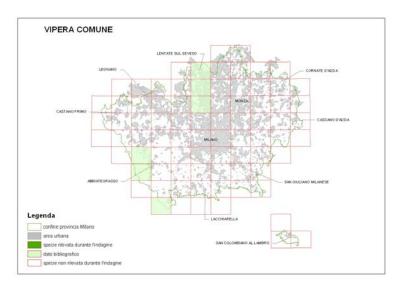

discretamente adattabile, ha risentito della forte urbanizzazione della provincia.


Il saettone è distribuito in 15 quadranti, pari al 18,5% del territorio. Le segnalazioni complessive sono state 15 di cui 3 raccolte in questa indagine; in 14 quadranti risultano segnalazioni bibliografiche, di cui 2 riconfermate in questo studio, e in 1 quadrante è stata rilevata una nuova segnalazione. La presenza è diffusa in tutta la provincia ma risulta rara e localizzata nei Parchi e aree protette con presenza di boschi.

Altre segnalazioni non riportate riguardano tutta l'asta del Parco del Ticino e le sorgenti della Muzzetta (Gentilli e Scali 2004).

Il biacco è distribuito in 30 quadranti, pari al 37,0 % del territorio. Le segnalazioni complessive sono 58 di cui 11 raccolte in questa indagine; in 24 quadranti risultano segnalazioni bibliografiche, di cui 4 riconfermate, e in 6 quadranti è stata rilevata una nuova segnalazione. La presenza è abbastanza diffusa in tutta la provincia, ma risulta più scarsa nella porzione orientale. La specie è comune, anche


se non abbondante, presente anche nelle aree a moderata antropizzazione, sicuramente c'è una carenza di informazioni per le aree scoperte del settore orientale.


La natrice dal collare è distribuita in 29 quadranti, pari al 35,8 % del territorio. Le segnalazioni complessive sono 52 di cui 12 raccolte in questa indagine; in 25 quadranti risultano segnalazioni bibliografiche, di cui 4 riconfermate in questa indagine, e in 4 quadranti è stata rilevata una nuova segnalazione. La specie è diffusa in tutta la provincia, in maniera uniforme nei Parchi del Ticino, delle Groane, e Adda Nord. Nel Parco

Agricolo Sud Milano è più diffusa nella fascia più ricca di fontanili e risaie, meno nella porzione orientale. È comunque, insieme al biacco, la specie più comune, strettamente legata agli spechi d'acqua corrente e ferma.

La natrice tassellata è distribuita in 16 quadranti, pari al 19,8% del territorio. Le segnalazioni complessive sono state 21 di cui 8 raccolte in questa indagine; in 13 quadranti risultano segnalazioni bibliografiche, di cui 3 riconfermate da questa ricerca, e in 3 quadranti è stata rilevata una nuova segnalazione. La specie è diffusa in tutto il settore meridionale della provincia, in maniera uniforme nei Parchi del Ticino e Adda

Nord, più discontinua la presenza nel Parco Agricolo Sud Milano, anche se la specie è stata osservata diverse volte. Mancano segnalazioni per la parte settentrionale della provincia; anche a livello regionale è più abbondante nelle porzioni meridionali della pianura. La natrice tassellata è l'unica specie non segnalata nel Parco delle Groane pur essendoci ambienti naturali d'elevato valore, la presenza di vasti agglomerati urbani più o meno in continuità probabilmente ne limita la diffusione.

La vipera comune (Vipera aspis) è distribuita in 6 quadranti, pari al 7,4 % del territorio. Le segnalazioni 8 complessive sono е tutte bibliografiche (Barbieri e Gentilli 2002, Bogliani 2004, Scali 2005). I 6 quadranti di presenza rientrano tutti nel Parco del Ticino (incompleto in questa mappa) e nel Parco delle Groane. La specie non è comune, non è mai stata contattata e non risultano segnalazioni in altre aree.

La vipera è abbastanza diffusa in regione, più localizzata nella parte di pianura.

2.2.3 Relazioni specie - habitat

L'analisi della varianza effettuata per la **lucertola muraiola** (Tab. 21) ha evidenziato differenze significative tra i punti di presenza e i punti di controllo per le aree urbanizzate, i seminativi a bassa naturalità, i filari e lo sviluppo della rete stradale, con valori minori nei casi di presenza. Significative sono risultate anche le differenze per i boschi di latifoglie e misti, con valori sensibilmente maggiori per i casi di presenza. La diversità e complessità ambientale sono risultate significativamente maggiori nei casi di presenza. L'AFD ha selezionato i cedui di latifoglie e la diversità ambientale come variabili più importanti nella discriminazione. I casi correttamente classificati dalla AFD sono stati il 73,7% dei casi originari (Tab. 22).

Tabella 21 – Valori medi e significatività delle variabili ambientali calcolate nei buffer di controllo e nei buffer di presenza della lucertola muraiola, in provincia di Milano

Variabili ambientali	Buffer controllo (N=103)		Buffer di presenza (N=91)			
variabili allibientali	Media	ES	Media	ES	F	Sig.
Urbano	38,43	3,412	20,78	2,291	17,469	0,000
Seminativi bassa naturalità (%)	39,96	3,041	31,24	2,027	5,401	0,021
Seminativi alta naturalità (%)	12,39	1,933	14,82	1,863	0,809	0,370
Aree estrattive e discariche bonificate (%)	0,19	0,194	0,25	0,129	0,047	0,829
Incolti (%)	0,31	0,091	0,42	0,156	0,377	0,540
Cespugliati (%)	0,88	0,181	2,68	0,563	10,225	0,002
Cedui di latifoglie (%)	4,93	1,223	20,02	2,446	32,616	0,000
Boschi ripariali (%)	1,80	0,307	2,98	0,574	3,497	0,063
Boschi misti (%)	0,25	0,222	4,08	1,431	7,890	0,005
Fiumi (%)	0,50	0,109	1,67	0,387	9,329	0,003
Bacini (%)	0,36	0,190	1,06	0,375	2,967	0,087
Indice di Shannon	0,90	0,045	1,25	0,038	33,105	0,000
Filari continui (metri)	586,99	64,223	415,69	55,157	3,988	0,047
Filari discontinui (metri)	196,32	27,718	105,54	20,081	6,721	0,010
Totale filari (metri)	783,31	78,985	521,23	63,099	6,492	0,012
Sviluppo stradale (metri)	615,70	59,783	441,73	54,247	4,554	0,034
Sviluppo ferroviario (metri)	125,90	35,812	78,12	25,450	1,128	0,290
Sviluppo rete idrica (metri)	271,70	47,937	438,55	57,789	5,015	0,026
Numero totale dei poligoni	12,00	0,770	15,91	0,741	13,242	0,000
Dimensione media dei poligoni	12,41	1,612	6,30	0,517	11,739	0,001
Valore deviazione standard dei poligoni	14,24	0,840	9,88	0,527	18,239	0,000
Perimetro totale dei poligoni	13.196	556,505	17.090	587,316	23,140	0,000
Complessità della forma dei poligoni	1,68	0,031	1,86	0,175	1,194	0,276
Rapporto tra la somma deo perimetri e delle aree dei						
poligoni	1.822,21	421,611	16.674,22	14.564,389	1,177	0,279

Variabili ambientali	Coeff. Standardizzati della FD	Coeff. di correlazione della FD
Cedui di latifoglie	0,673	0,654
Indice di Shannon	0,496	0,658
Boschi misti	0,421	0,321
Fiumi	0,280	0,247
Autovalore		0,398
Correlazione canonica		0,533
Chi-quadrato		63,6
P		< 0,0001

Tabella 22 – Risultati dell'Analisi di Funzione Discriminante sui buffer di controllo e sui buffer di presenza della lucertola muraiola, in provincia di Milano.

Nel caso del **ramarro** sono risultate significative al confronto fra medie molte variabili, quelle che hanno avuto le differenze più evidenti sono state le aree urbanizzate, i filari, lo sviluppo stradale (con valori molto bassi nei casi di presenza), i cedui di latifoglie, i cespugliati, i boschi riparali e lo sviluppo della rete idrica (con valori alti nei casi di presenza) (Tab. 23).

Tabella 23 – Valori medi e significatività delle variabili ambientali calcolate nei buffer di controllo e nei buffer di presenza del ramarro, in provincia di Milano

Variabili ambientali	Buffer contr	ollo (N=103)	Buffer di presenza (N=49)			
variabili allibiethali	Media	ES	Media	ES	F	Sig.
Urbano	38,43	3,412	11,15	2,018	28,103	0,000
Seminativi bassa naturalità (%)	39,96	3,041	31,02	3,587	3,125	0,079
Seminativi alta naturalità (%)	12,39	1,933	12,64	1,872	0,007	0,934
Aree estrattive e discariche bonificate (%)	0,19	0,194	0,12	0,099	0,072	0,789
Incolti (%)	0,31	0,091	0,27	0,107	0,067	0,795
Cespugliati (%)	0,88	0,181	4,48	1,025	22,838	0,000
Cedui di latifoglie (%)	4,93	1,223	25,60	3,698	44,448	0,000
Boschi ripariali (%)	1,80	0,307	4,14	1,138	6,752	0,010
Boschi misti (%)	0,25	0,222	6,95	2,549	14,138	0,000
Fiumi (%)	0,50	0,109	2,22	0,680	12,143	0,001
Bacini (%)	0,36	0,190	1,40	0,525	5,267	0,023
Indice di Shannon	0,90	0,045	1,29	0,050	27,679	0,000
Filari continui (metri)	586,99	64,223	309,98	47,471	7,858	0,006
Filari discontinui (metri)	196,32	27,718	71,78	21,879	8,400	0,004
Totale filari (metri)	783,31	78,985	381,76	58,334	10,920	0,001
Sviluppo stradale (metri)	615,70	59,783	401,61	75,514	4,479	0,036
Sviluppo ferroviario (metri)	125,90	35,812	0,00	0,000	5,859	0,017
Sviluppo rete idrica (metri)	271,70	47,937	512,71	78,913	7,459	0,007
Numero totale dei poligoni	12,00	0,770	15,92	1,067	8,583	0,004
Dimensione media dei poligoni	12,41	1,612	5,79	0,448	7,878	0,006
Valore deviazione standard dei poligoni	14,24	0,840	9,39	0,683	13,808	0,000
Perimetro totale dei poligoni	13.196	556,505	17.039	763,003	15,917	0,000
Complessità della forma dei poligoni	1,68	0,031	1,72	0,038	0,814	0,369
Rapporto tra la somma dei perimetri e delle						
aree dei poligoni	1.822,21	421,611	1.581,75	520,657	0,115	0,735

La AFD ha selezionato come variabili più importanti quelle fortemente negative (aree urbane, filari e seminativi a bassa naturalità), i casi correttamente classificati sono stati percentualmente elevati (82,2 % Tab. 24).

La specie risulta più selettiva della lucertola muraiola, frequenta più o meno tutti gli ambienti ad elevata naturalità mentre tende ad evitare le aree molto modificate dall'azione umana, aree urbane e seminativi intensivi.

Variabili ambientali	Coeff. Standardizzati della FD	Coeff. di correlazione della FD
Urbano	1,345	0,446
Totale filari	0,840	0,278
Seminativi bassa naturalità	0,798	0,149
Bacini	-0,247	-0,193
Autovalore		0,941
Correlazione canonica		0,696
Chi-quadrato		98,2
Р		< 0,0001

Tabella 24 – Risultati dell'Analisi di Funzione Discriminante sui buffer di controllo e sui buffer di presenza del **ramarro**, in provincia di Milano.

L'ANOVA relativa alla **natrice dal collare** ha dato risultati simili a quelli della lucertola muraiola; le variabili con differenze significative sono state quelle degli ambienti più legati alla presenza di acqua (boschi ripariali, fiumi, bacini). Non sono emerse differenze significative per seminativi che hanno avuto valori medi uguali nei buffer di presenza e di controllo.

Tabella 25 – Valori medi e significatività delle variabili ambientali calcolate nei buffer di controllo e nei buffer di presenza della **natrice dal collare**, in provincia di Milano

Variabili ambientali	Buffer contro	ollo (N=103)	Ви	Buffer di presenza (N=52)		
	Media	ES	Media	ES	F	Sig.
Urbano	38,43	3,412	16,53	2,496	18,252	0,000
Seminativi bassa naturalità (%)	39,96	3,041	39,99	3,768	0,000	0,996
Seminativi alta naturalità (%)	12,39	1,933	13,86	2,396	0,209	0,648
Aree estrattive e discariche bonificate (%)	0,19	0,194	0,48	0,319	0,670	0,414
Incolti (%)	0,31	0,091	0,38	0,214	0,118	0,732
Cespugliati (%)	0,88	0,181	2,42	0,612	9,312	0,003
Cedui di latifoglie (%)	4,93	1,223	15,67	2,762	16,950	0,000
Boschi ripariali (%)	1,80	0,307	3,42	0,871	4,578	0,034
Boschi misti (%)	0,25	0,222	3,26	1,694	5,891	0,016
Fiumi (%)	0,50	0,109	1,73	0,642	6,554	0,011
Bacini (%)	0,36	0,190	2,26	0,855	8,197	0,005
Indice di Shannon	0,90	0,045	1,29	0,045	30,102	0,000
Filari continui (metri)	586,99	64,223	401,38	59,064	3,464	0,065
Filari discontinui (metri)	196,32	27,718	108,63	34,687	3,609	0,059
Totale filari (metri)	783,31	78,985	510,02	71,412	4,994	0,027
Sviluppo stradale (metri)	615,70	59,783	431,27	64,781	3,694	0,056
Sviluppo ferroviario (metri)	125,90	35,812	47,77	27,506	2,085	0,151
Sviluppo rete idrica (metri)	271,70	47,937	378,77	74,121	1,566	0,213
Numero totale dei poligoni	12,00	0,770	14,98	0,709	6,209	0,014
Dimensione media dei poligoni	12,41	1,612	5,78	0,313	8,450	0,004
Valore deviazione standard dei poligoni	14,24	0,840	9,41	0,596	14,777	0,000
Perimetro totale dei poligoni	13.196,05	556,505	16.907,85	618,698	17,063	0,000
Complessità della forma dei poligoni	1,68	0,031	1,69	0,018	0,142	0,707
Rapporto tra la somma deo perimetri e delle						
aree dei poligoni	1.822,21	421,611	1.082,46	158,534	1,496	0,223

L'AFD oltre a selezionare le principali variabili negative (aree urbane e filari), ha selezionato molte variabili legate alla diversità ambientale, Indice di Shannon, numero dei poligoni e complessità della forma. La percentuale dei casi correttamente classificati è stata del 77,4% (Tab. 26).

Variabili ambientali	Coeff. Standardizzati della FD	Coeff. di correlazione della FD
Urbano	1,078	0,450
Indice di Shannon	-0,846	-0,578
Totale filari	0,824	0,236
Numero totale dei poligoni	0,584	-0,263
Seminativi bassa naturalità	0,473	-0,001
Complessità della forma dei poligoni	0,391	-0,040
Autovalore		0,588
Correlazione canonica		0,608
Chi-quadrato		69,4
P		< 0,0001

Tabella 26 – Risultati dell'Analisi di Funzione Discriminante sui buffer di controllo e sui buffer di presenza della natrice dal collare, in provincia di Milano.

Nei punti di presenza della **natrice tassellata** sono stati registrati valori medi delle variabili relative agli habitat naturali significativamente più elevati che nei punti di controllo (Tab. 27). Valori elevati, maggiori che nella natrice dal collare, sono stati rilevati anche per le variabili degli ambienti acquatici (boschi ripariali, fiumi, rete idrica).

Tabella 27 – Valori medi e significatività delle variabili ambientali calcolate nei buffer di controllo e nei buffer di presenza della natrice tassellata, in provincia di Milano

Variabili ambientali	Buffer casuali (N=103)		Buffer di presenza (N=21)			
variabili allibielitali	Media	ES	Media	ES	F	Sig.
Urbano (%)	38,43	3,412	16,71	5,135	7,522	0,007
Seminativi bassa naturalità (%)	39,96	3,041	30,67	5,786	1,651	0,201
Seminativi alta naturalità (%)	12,39	1,933	14,31	3,584	0,177	0,675
Aree estrattive e discariche bonificate (%)	0,19	0,194	0,00	0,000	0,203	0,653
Incolti (%)	0,31	0,091	0,00	0,000	2,319	0,130
Cespugliati (%)	0,88	0,181	3,30	1,225	12,687	0,001
Cedui di latifoglie (%)	4,93	1,223	21,83	6,140	19,249	0,000
Boschi ripariali (%)	1,80	0,307	7,69	1,902	29,345	0,000
Boschi misti (%)	0,25	0,222	0,00	0,000	0,253	0,616
Fiumi (%)	0,50	0,109	4,22	1,341	33,379	0,000
Bacini (%)	0,36	0,190	1,28	1,031	2,155	0,145
Indice di Shannon	0,90	0,045	1,19	0,079	7,146	0,009
Filari continui (metri)	586,99	64,223	390,19	97,716	1,741	0,189
Filari discontinui (metri)	196,32	27,718	95,67	34,261	2,517	0,115
Totale filari (metri)	783,31	78,985	485,86	104,071	2,686	0,104
Sviluppo stradale (metri)	615,70	59,783	469,81	120,026	1,039	0,310
Sviluppo ferroviario (metri)	125,90	35,812	70,71	50,738	0,445	0,506
Sviluppo rete idrica (metri)	271,70	47,937	677,10	128,979	11,235	0,001
Numero totale dei poligoni	12,00	0,770	14,14	1,231	1,423	0,235
Dimensione media dei poligoni	12,41	1,612	6,21	0,751	2,971	0,087
Valore deviazione standard dei poligoni	14,24	0,840	9,96	1,212	4,863	0,029
Perimetro totale dei poligoni	13.196,05	556,505	15.610,03	1.059,891	3,329	0,071
Complessità della forma dei poligoni	1,68	0,031	1,83	0,110	3,336	0,070
Rapporto tra la somma dei perimetri e delle aree dei poligoni	1.822,21	421,611	3.984,29	2.014,371	2,785	0,098

L'AFD ha selezionato solo le variabili legate al bosco e agli ambienti più acquatici; i casi correttamente classificati sono stati l'86,3% (Tab. 28)

Variabili ambientali	Coeff. Standardizzati della FD	Coeff. di correlazione della FD
Cedui di latifoglie	0,577	0,570
Boschi ripariali	0,461	0,704
Fiumi	0,460	0,254
Autovalore		0,485
Correlazione canonica		0,571
Chi-quadrato		47,6
D		< 0.0001

Tabella 28 – Risultati dell'Analisi di Funzione Discriminante sui buffer di controllo e sui buffer di presenza della natrice dal collare, in provincia di Milano.

L'ANOVA effettuata per il **biacco** ha evidenziato differenze significative per le variabili degli habitat naturali, con valori maggiori nei casi di presenza, e per le aree urbane, per i seminativi a bassa naturalità e per i filari (con valori più elevati nei punti di controllo. Inoltre, numerose differenze significative sono state trovate per le variabili relative alla diversità e alla complessità del mosaico ambientale (Tab. 29).

Tabella 29 – Valori medi e significatività delle variabili ambientali calcolate nei buffer di controllo e nei buffer di presenza del **biacco**, in provincia di Milano

Variabili ambientali	Buffer contr	ollo (N=103)	Buffer di presenza (N=58)			
variabili ambientali	Media	ES	Media	ES	F	Sig.
Urbano	38,43	3,412	20,72	3,278	11,720	0,001
Seminativi bassa naturalità (%)	39,96	3,041	27,97	2,977	6,706	0,011
Seminativi alta naturalità (%)	12,39	1,933	15,26	1,998	0,926	0,337
Aree estrattive e discariche bonificate (%)	0,19	0,194	0,07	0,074	0,205	0,651
Incolti (%)	0,31	0,091	0,20	0,068	0,699	0,404
Cespugliati (%)	0,88	0,181	2,92	0,623	15,006	0,000
Cedui di latifoglie (%)	4,93	1,223	18,36	2,685	26,868	0,000
Boschi ripariali (%)	1,80	0,307	3,84	0,856	7,183	0,008
Boschi misti (%)	0,25	0,222	6,70	2,336	13,240	0,000
Fiumi (%)	0,50	0,109	2,46	0,658	14,607	0,000
Bacini (%)	0,36	0,190	1,49	0,646	4,304	0,040
Indice di Shannon	0,90	0,045	1,29	0,053	28,597	0,000
Filari continui (metri)	586,99	64,223	447,34	66,521	1,985	0,161
Filari discontinui (metri)	196,32	27,718	67,98	13,686	11,181	0,001
Totale filari (metri)	783,31	78,985	515,33	73,538	5,079	0,026
Sviluppo stradale (metri)	615,70	59,783	564,67	84,887	0,250	0,618
Sviluppo ferroviario (metri)	125,90	35,812	99,40	47,425	0,198	0,657
Sviluppo rete idrica (metri)	271,70	47,937	511,59	74,496	7,990	0,005
Numero totale dei poligoni	12,00	0,770	16,19	0,950	11,243	0,001
Dimensione media dei poligoni	12,41	1,612	6,71	1,309	5,823	0,017
Valore deviazione standard dei poligoni	14,24	0,840	8,89	0,681	18,932	0,000
Perimetro totale dei poligoni	13.196	556,50	17.251	742,624	19,112	0,000
Complessità della forma dei poligoni	1,68	0,031	1,73	0,044	0,891	0,347
Rapporto tra la somma deo perimetri e delle aree dei poligoni	1.822,21	421,611	1.862,88	835,892	0,002	0,962

L'AFD ha selezionato l'indice di Shannon i boschi di latifoglie e quelli misti (Tab. 30); sono stati selezionati anche gli incolti che hanno avuto valori medi più bassi nei buffer di presenza, sebbene la differenza non sia stata significativa. Questo risulta poco coerente con le abitudini della specie che generalmente predilige questi ambienti, occorrerebbe valutare meglio la definizione di questa variabile nella carta dell'uso del suolo, probabilmente anche la scarsa presenza sul territorio (0,3 %) non facilita l'interpretazione. I casi originari correttamente classificati sono stati il 78,3%.

Variabili ambientali	Coeff. Standardizzati della FD	Coeff. di correlazione della FD
Indice di Shannon	0,639	0,579
Boschi misti	0,478	0,394
Cedui di latifoglie	0,463	0,561
Incolti	-0,410	-0,091
Filari discontinui	-0,401	-0,362
Autovalore		0,536
Correlazione canonica		0,591
Chi-quadrato		67,2
P		< 0,0001

Tabella 30 – Risultati dell'Analisi di Funzione Discriminante sui buffer di controllo e sui buffer di presenza del biacco, in provincia di Milano.

Per il **saettone** le variabili con differenze significative sono state gli ambienti naturali, in particolare i boschi ripariali e i cedui di latifoglie e quelle relative alla diversità e complessità ambientale, con valori più elevati nei siti di presenza (Tab. 31). Lo sviluppo stradale ha avuto valori percentuali significativamente più bassi nei buffer di presenza, quindi in zone abbastanza isolate, con scarsa presenza di aree urbanizzate.

L'AFD ha selezionato solo i tre tipi di bosco con potere discriminante molto simile fra loro e ha correttamente classificato un'elevata percentuale di casi originari (86,2% Tab. 32).

Tabella 31 – Valori medi e significatività delle variabili ambientali calcolate nei buffer di controllo e nei buffer di presenza del saettone, in provincia di Milano

Variabili ambientali	Buffer contro	ollo (N=103)	Ви	Buffer di presenza (N=20)		
variabili allibietitali	Media	ES	Media	ES	F	Sig.
Urbano	38,43	3,412	6,64	1,503	16,626	0,000
Seminativi bassa naturalità (%)	39,96	3,041	32,80	5,437	0,960	0,329
Seminativi alta naturalità (%)	12,39	1,933	14,60	2,971	0,232	0,631
Aree estrattive e discariche bonificate (%)	0,19	0,194	0,07	0,070	0,079	0,780
Incolti (%)	0,31	0,091	0,02	0,015	1,997	0,160
Cespugliati (%)	0,88	0,181	2,61	0,990	8,421	0,004
Cedui di latifoglie (%)	4,93	1,223	23,67	5,211	27,306	0,000
Boschi ripariali (%)	1,80	0,307	7,83	2,153	26,749	0,000
Boschi misti (%)	0,25	0,222	6,29	4,372	9,488	0,003
Fiumi (%)	0,50	0,109	4,04	1,668	21,454	0,000
Bacini (%)	0,36	0,190	1,49	0,943	3,567	0,061
Indice di Shannon	0,90	0,045	1,31	0,074	14,630	0,000
Filari continui (metri)	586,99	64,223	414,10	84,852	1,315	0,254
Filari discontinui (metri)	196,32	27,718	94,15	32,159	2,499	0,117
Totale filari (metri)	783,31	78,985	508,25	105,618	2,197	0,141
Sviluppo stradale (metri)	615,70	59,783	270,00	81,031	6,048	0,015
Sviluppo ferroviario (metri)	125,90	35,812	0,00	0,000	2,384	0,125
Sviluppo rete idrica (metri)	271,70	47,937	473,25	127,739	2,713	0,102
Numero totale dei poligoni	12,00	0,770	15,45	1,356	3,481	0,064
Dimensione media dei poligoni	12,41	1,612	5,15	0,718	3,892	0,051
Valore deviazione standard dei poligoni	14,24	0,840	8,48	1,170	8,474	0,004
Perimetro totale dei poligoni	13.196,05	556,505	16.639,71	1.238,241	6,264	0,014
Complessità della forma dei poligoni	1,68	0,031	1,94	0,144	7,796	0,006
Rapporto tra la somma dei perimetri e delle aree dei poligoni	1.822,21	421,611	7.773,21	4.553,857	7,362	0,008

Variabili ambientali	Coeff. Standardizzati della FD	Coeff. di correlazione della FD
Boschi ripariali	0,733	0,547
Cedui di latifoglie	0,717	0,553
Boschi misti	0,622	0,326
Autovalor e		0,739
Correlazione canonica		0,652
Chi-quadrante		66,1
P		< 0,0001

Tabella 32 – Risultati dell'Analisi di Funzione Discriminante sui buffer di controllo e sui buffer di presenza del **saettone**, in provincia di Milano.

2.2.4 Relazioni tra presenza delle specie e grado di naturalità del territorio e indicatori ambientali

L'analisi del territorio della provincia ha permesso di calcolare diversi punteggi di naturalità per ogni quadrante e sono state analizzate le differenze di tali punteggi tra quadranti di presenza e di assenza delle specie in modo univariato e multivariato. Nella tabella 33 sono indicate le singole variabili di naturalità e il punteggio complessivo, sono state inserite solo le specie per le quali almeno una variabile risultasse con differenze significative tra presenza e assenza.

Tabella 33 - Risultati delle Analisi della varianza univariate (one-way ANOVA) e multivariate (MANOVA, GLM) e loro significatività per i diversi punteggi dell'indice di naturalità misurato nei quadranti di presenza e di assenza delle diverse specie (in rosso i casi in cui i valori sono maggiori nei quadranti di presenza)

		Punteggi naturalità					Lambela				
		Uso suolo	Veg. naturale		Sviluppo filari		Ind.mosaico coltivi nat.	Ind.mosaico veg.nat	Punteggio complessivo	Lambda di Wilks	Р
Lucertola muraiola	F		5,82		4,26			12,38	4,82		0,006
	Sig.		0,018		0,042			0,001	0,031	0,768	
F <i>Ramarro</i> Sig.	F		7,55					8,49	7,14	0,835	0,058
	Sig.		0,007					0,005	0,009	0,835	
F <i>Orbettino</i> Sig	F		3,95					8,51	7,74	0.855	n. s.
	Sig.		0,050					0,005	0,032	0.033	
Natrice tassellata	F	3,86	17,20					9,51	11,33	0,757	0,004
	Sig.	0,053	0,000					0,003	0,001	0,737	
Saettone	F		4,20					5,77		0,862	n. s.
	Sig.		0,044					0,019			

All'analisi multivariata della varianza sono risultate differenze globalmente significative solo per 3 specie di rettili, e per altre 2 sono state trovate significatività per almeno una variabile di naturalità. Per tutte le specie i punteggi di naturalità sono risultati più elevati nei quadranti di presenza. Le specie per le quali sono state rilevate più differenze significative sono state la lucertola muraiola e la natrice tassellata (4 differenze significative); per il ramarro e l'orbettino sono risultate 3 differenze significative e, infine, per il saettone solo due diffrenze significative.

Dalle analisi fino adesso effettuate sulle preferenze ambientali, sia sulla naturalità in generale sia sulle singole variabili ambientali analizzate nei paragrafi precedenti, è possibile definire quali specie possano essere considerate dei buoni indicatori di qualità ambientale. A differenza della classe anfibi non spiccano nettamente delle specie di certa definizione, in accordo con quanto è risultato dalla tabella della MANOVA si potrebbe definire un buon indicatore ambientale la **natrice tassellata**; la presenza di questa specie risulta in stretta relazione con la naturalità del territorio e con le singole variabili degli habitat naturali, gli ofidi in generale non sono specie facilmente censibili ma tra queste le natrici sono forse quelle meno complicate per il loro forte legame con gli ambienti acquatici.

Un'altra specie è il **ramarro**, ha una buona correlazione con la naturalità del territorio, è più facilmente osservabile anche se il legame con gli habitat naturali non appare molto forte; dalle analisi del precedente capitolo, infatti, si notava più una relazione negativa con le variabili di minore naturalità che non positiva con quelle naturali. Entrambe queste specie utilizzano anche ad un tipo di agricoltura più naturale, ambiente che in provincia di Milano merita essere valorizzato anche come risorsa storica e culturale.

Se consideriamo le altre specie selezionate dalla MANOVA, orbettino, saettone e lucertola muraiola, per la prima si evidenzia una stretta relazione con il grado di naturalità, anche se il campione è stato particolarmente limitato, ma le abitudini fossorie lo escludono dalla scelta. La presenza del **saettone**, pur non essendo questa una specie facilmente censibile, appare dipendente dalla naturalità e soprattutto con le singole variabili degli habitat naturali. Sarebbe da escludere, invece la lucertola muraiola che dalle analisi risulta un po' contraddittoria, buona relazione con la naturalità, ma poco con le singole variabili ambientali dove si evidenzia una relazione negativa sui filari (caratteristica legata più ad una agricoltura anche di tipo intensivo) nelle analisi sui buffer e una relazione positiva nelle analisi sui quadranti.

Anche in questo caso, come per gli anfibi, le considerazioni sono intrinsecamente legate al territorio in esame, caratterizzato da forte urbanizzazione e agricoltura, pertanto potrebbero non essere applicabili a differenti realtà.

2.2.5 Valori di Rarità, Vulnerabilità, Ricchezza Specifica e Biodiversità dei rettili

Sulla base dei metodi esposti, per calcolare i valori di Rarità, Vulnerabilità e Ricchezza Specifica sono stati utilizzati i dati di presenza di ogni specie. Ogni valore specifico è stato poi attribuito a ogni quadrante di riferimento della carta floristica calcolando così un indice di Rarità, Vulnerabilità e Diversità Specifica per ogni quadrante. L'indice di biodiversità per la classe dei rettili è il risultato della combinazione dei precedenti indici. I risultati di ogni singolo indice sono esposti in tabella negli allegati, mentre di seguito viene esposta la figura relativa all'Indice di Biodiversità (Fig. 8).

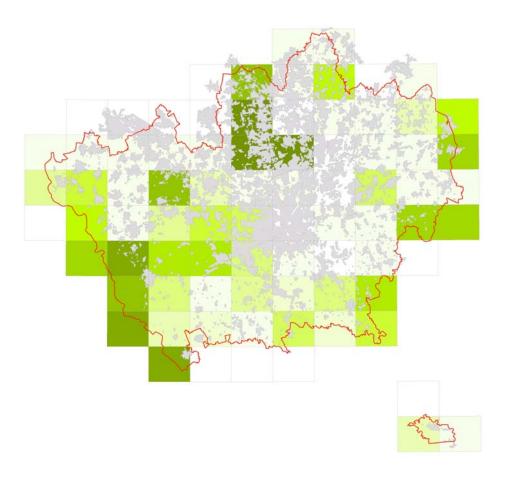


Figura 8 - Quadranti della carta floristica con grado crescente di biodiversità dei rettili

I quadranti vengono mostrati con valori crescenti di biodiversità. Sul totale degli 81 quadranti di riferimento 17 (il 21%) non ci sono informazioni per quantificare l'indice di biodiversità, in 30 quadranti (il 37%) l'indice di biodiversità è basso, in 21 quadranti (il 26%) ha valori medi, in 8 quadranti (il 10%) valori medio-alti e in 5 quadranti (il 6%) valore molto elevati.

Le aree a biodiversità alta e molto alta sono risultate quelle ricadenti ai Parchi Regionali. In particolare il Parco delle Groane è quello che meglio identifica la biodiversità dei rettili per tutta la sua superficie, segue il Parco del Ticino che a differenza degli anfibi a valori maggiori nella sua porzione centro-meridionale. Anche in questo caso,

considerando che le caratteristiche ambientali e lo stato di conservazione delle aree settentrionali e meridionali sono molto simili, la differenza potrebbe dipendere dal maggior numero di segnalazioni raccolte.

Esistono altre porzioni di territorio che mostrano valori dell'Indice di Biodiversità medio-elevati, si trovano nel Parco dell'Adda Nord, e in alcune zone del Parco Agricolo Sud Milano (parti meridionali e occidentali) e nel PLIS Parco del Roccolo. Valori bassi sono legati alle poche aree libere all'interno di grossi complessi urbani.

Sull'Indice di Biodiversità, calcolato per i rettili, è stata condotta un'Analisi di Correlazione bivariata (Rho di Spearmann) al fine di evidenziare per questa classe eventuali correlazioni con i diversi punteggi di naturalità (Tab. 34). Risultano significative 3 variabili (e 1 prossima ai limiti di significatività) su 8. La distribuzione di queste variabili nel territorio provinciale sono esposte nel capitolo sulla naturalità.

Tabella 34 – Relazioni tra la biodiversità della classe rettili e le variabili di naturalità.

Variabili di naturalità	Coefficiente di correlazione	Sig.					
Usi del suolo	0,3677	0,0033					
Vegetazione naturale	0,3462	0,0058					
Coltivi naturali	-0,0369	0,7753					
Sviluppo filari	-0,0104	0,9357					
Matrice non naturali	0,1534	0,2339					
Indice mosaico coltivi naturali	-0,0249	0,8473					
Indice mosaico vegetazione naturale	0,2442	0,0558					
Punteggio totale	0,2884	0,0229					
La correlazione è significativa al livello 0,01							

I rettili in generale risultano una classe abbastanza correlata con le variabili naturali, in misura minore rispetto alla classe degli anfibi. Tutte le correlazioni significative sono positive, pertanto, almeno alcune specie, possono essere considerate dei discreti indicatori di qualità ambientale.